
Windows® Program Structure

What is a Window?

Most people who use the Windows environment never really understand what the word "window" actually means. Most users realize the rectangular box that appears on the screen when a new application is opened is a window. They probably think of the text area of their word processor as a window as well.

In most applications, every dialog box, menu, button, edit field, list box, etc. is actually a separate window with one or more identifiers that can be used to refer to it. However, a programmer may choose to create controls, such as entry fields, without making them actual windows. Programs like this are the most difficult to make accessible because there's no simple way to identify and speak the various controls.

Windows Hierarchy

The operating system does not randomly place the various windows that may be present on your screen at any one time. They are interrelated with a special hierarchy that allows the Windows operating system and the programmers who work within it to keep track of each window.

You can think of these inter-relationships as one of parents and children. The desktop is the parent of all application windows. Thus, the JAWS® window, your word processor's window and the Internet browser's window are all children of the desktop. These windows are all one level down from the desktop, which makes them all children of the desktop at the same logical level. It also means that all of them are peers of each other. When you later encounter terms such as PriorWindow and NextWindow, the reference is to moving among peer windows at the same logical level.

The word processor window has several child windows, the text area, the menu bar, the toolbar and the status line. These are all children of the word processor window and are all children at the same logical level. When you press the keystroke to open a file in your word processor, the word processor displays a child window that prompts you for the file to open. This window is often referred to as a dialog box, but it is a child window to the word processor, its parent.

If you think of the Open File dialog box as a parent then you will find that the File Name edit box and all other controls are children of the open file dialog box. These are all children of the parent dialog and are at the same logical level. Each window is a child to the window one level up that spawned or generated it, and each window is a parent to the windows one level down from it.

You can find a good analogy of the parent-child relationship by using the directory structure of your PC. On your disk drive, the C:\ drive is the parent of all other directories on your drive. All of the subdirectories one level down from C:\ are children of that parent and are at the same logical level.

Thus, if you have sub-folders named Program Files, Users, and Windows on your system, they are all one level down from C:\. They are all children of C:\ and are all one logical level down. For the purposes of folder structure and window hierarchy, you can assume that being at the same logical level means that all windows were spawned or generated by the same parent.

When you open the Program Files subdirectory , you should find subdirectories such as Common Files, Freedom Scientific and Internet Explorer. These three sub-folders are all one level down from Program Files, are children of Program Files, and are at the same logical level as each other, two levels down from C:\. This can continue until the lowest logical level of a particular branch is reached.

The parent/child structure of Windows works much the same way as a folder structure. Each application is a branch of the tree, and child windows are spawned from it. All windows one level down from the parent application are children at the same logical level. Each of these children can spawn children of their own, and these children are three levels down from the parent application.

Identifying Windows

An application programmer assigns a number of identifiers to each window. These identifiers allow the window in question to be referred to unambiguously. Each window has a class, type, type code, window subtype code, and control ID. These window categories are important because JAWS behaves differently, depending on what category of window is active.

For example, if an edit field is active, JAWS tracks the insertion point. When you press down arrow, JAWS speaks the line of text to which the insertion point moves. When a list box or menu is active, JAWS tracks the highlight or lightbar as the arrow keys are used to move it up and down the list. JAWS knows to do these things because of the scripts that are associated with the up and down arrow keys in the Default.jss script file. These scripts contain logic that decides what to do based on the type of the window that has the focus when one of these keys is used.

The Window Handle

The window handle is a unique number assigned by the operating system to each window when it is created during a given session. Window handles change each time the window is created. However, the handle value remains constant as long as the window exists.

As long as a window exists, you can use the handle to refer to and identify that window. But when a window is closed, it relinquishes its handle. If the window is created later, the operating system assigns a different handle.

You can retrieve the window handle using the built-in functions, GetCurrentWindow and GetFocus. There is a distinct difference between these two functions. The GetFocus function retrieves the handle of the window that contains the insertion point or system focus. The GetCurrentWindow function retrieves the handle of the window containing the active cursor. An example of how the GetFocus function is used follows:

Script GetWindowFocus ()

Var

handle hFocusWindow

let hFocusWindow = GetFocus ()

; the GetFocus statement could be replaced by the following line:

; let hFocusWindow = GetCurrentWindow ()

SayInteger (hFocusWindow); speak the value of the window handle
EndScript

Window Class

The window class is a string of text that denotes some information about a window and what it does. A window class can be edit, list box, or a button. It provides valuable information about the window. However, the window class does not always provide specific information. Checking the window class will return the same information for a button, radio button, and checkbox all of which have a Window Class of button. JAWS recognizes 28 different classes.

Many times, programmers use custom window classes that JAWS cannot recognize. In these cases, you must tell JAWS how to treat the unrecognized class. After you tell JAWS how to treat a custom window class, JAWS reacts to the window class just as if it were a recognized window class.

You can retrieve the Window Class with the function, GetWindowClass. An example of how the window class is retrieved follows:

Script RetrieveWindowClass

Var

string sTheClass

let sTheClass = GetWindowClass (GetFocus ())

If sTheClass == “Edit” Then ; the window class is an edit box

SayFormattedMessage (OT_MESSAGE, “Focus is in an edit box.”)

Else

SayFormattedMessage (OT_MESSAGE, “The focus is not in an edit box.”)
EndIf

EndScript
Window Type

The window type is a string of text that describes the window. Occasionally, the window type reveals more specific information about certain windows. The window type and window class are the same if no more specific information is available. For example, the window class and window type of an edit box are exactly the same.
You can use the window type to differentiate between a checkbox and a radio button. You use the function GetWindowType to retrieve the Window Type. The GetWindowType function returns the string of “unknown window type” when the application programmer used a custom window class to define the window. The Window Type is always in English and is not very useful for those using JAWS in other languages.
An example of how the GetWindowType function is used follows:

Script RetrieveWindowType ()

Var

string sTheType

Let sTheType = GetWindowType (GetFocus ())

If sTheType == “Edit” Then

SayFormattedMessage (OT_MESSAGE, “The focus is in an edit box”)

Else

SayFormattedMessage (“OT_MESSAGE, The focus is not in an edit box.”) ; a window ;type other than edit was found

EndIf

EndScript

Window Type Code

The window type code is a numeric value instead of a string. This number is translated into a recognizable string by constant definitions found in the file, HJConst.jsh. For example, in this file you can find lines such as WT_BUTTON=1, WT_COMBOBOX=2, WT_EDIT=3, WT_LISTBOX=4, and WT_SCROLLBAR=5. The WT prefix of the constant indicates that this is a constant that refers to a window type code.
While the window type code does not provide any more information than the window type, it does have the advantage of being language independent. You retrieve the window type code with the function, GetWindowTypeCode. An example of how the GetWindowTypeCode function is used follows:

Script RetrieveWindowTypeCode ()

Var

int iTheTypeCode

Let iTheTypeCode = GetWindowTypeCode (GetFocus ())

If iTheTypeCode == WT_Edit Then

SayFormattedMessage (OT_MESSAGE, “The focus is in an edit box.”)

Else

SayFormattedMessage (OT_MESSAGE, “The focus is not in an edit box.”)

EndIf

EndScript

Window Subtype Code

Like the window type code, the window subtype code is also a numeric value. However, the window subtype code may provide more detailed information about a window. If no subtype code is available for the window, then the window type code and window subtype code are identical. You should use the window sub type code as it generally provides more specific information about a window than does the window type code. You can use the same constant definitions to refer to window subtype codes as you can for window type codes in your scripts and functions. For example, a radio button has a window type code of 1 (WT_Button) but a subtype code of 19 (WT_RadioButton).
Window subtype codes are also language independent. You use the function, GetWindowSubTypeCode, to retrieve the window subtype code for a given window. An example of the use of the GetWindowSubTypeCode function follows:

Script RetrieveWindowSubTypeCode ()

Var

Handle hWnd,

int iTheSubTypeCode,

int iTheTypeCode

let hWnd = GetFocus ()

let iTheTypeCode = GetWindowTypeCode (hWnd)

let iTheSubTypeCode = GetWindowSubTypeCode (hWnd)

If iTheTypeCode == WT_Button Then

If iTheSubTypeCode == WT_RadioButton Then
SayFormattedMessage (OT_MESSAGE, “The active window is a radio button.”)
Else
SayFormattedMessage (OT_MESSAGE, “The active window is not a radio button.”)

EndIf

Else

SayFormattedMessage (OT_MESSAGE, “The active window is not a button.”)

EndIf

EndScript

Window Control ID

The control ID is a number that is assigned by the programmer to each window during application development. The control ID, unlike the window class, has no special meaning, but you can use it to refer to a particular window. Ideally, no two windows in a program have the same control ID, but they sometimes do. If you know how to access the control ID, and, if it is unique within the application, you can tell JAWS to do certain things if you are focused on the window with the control ID you have identified.

One example where the use of control ID’s are extremely useful is in applications where the buttons are labeled with bit map drawings instead of text labels. Normally, JAWS speaks the text label of a button when you move to it. If the label is a drawing, there is no name to be spoken. By determining the control ID numbers of the various bit map buttons, you can write a script that speaks the name of a button when the focus moves to a button with a particular control ID.

In most cases, the control ID is defined during application development and can be relied upon to uniquely identify a specific window. However, you may find cases where control ID’s have not been assigned by the application developer. In these cases, you will find that each window in a given application have control ID values of 0. You must then rely on other window identifiers along with the window’s hierarchical position to uniquely identify it.

You may also find that the control ID’s in a given application are dynamically assigned. This means that each time an application window or any of it’s child windows are created, the control ID’s are assigned and do not remain constant. In these cases, you will find that you need to use the other windows identifiers and the window hierarchical position to uniquely identify the window.

You can determine if control ID’s are dynamically assigned by running the application, noting the control ID values of some of it’s child windows, then restarting the application and looking at those same control ID values. If they have changed, then you will know that the ID’s are dynamically assigned.

You use the function, GetControlID, to retrieve the control ID for a given window. An example of how the GetControlID function is used follows:

Script IdentifyWindow ()

Var

iControlID
let iControlID = GetControlID (GetFocus ())

If iControlID == 1100 Then

SayFormattedMessage (OT_MESSAGE, “This is the file name edit box”)

Else

SayFormattedMessage (OT_MESSAGE, “This is not the file name edit box.”)

EndIf

EndScript

Reassigning Window Classes
There is a standard list of window classes used by most programmers during the development of windows applications. The scripts and user-defined functions found in the default script file contain the necessary logic to allow proper speaking of these standard classes. However, application programmers do not always use standard window classes during application development. Many times, a programmer creates custom window classes that are non-standard. JAWS is unable to recognize the custom class and speak the window correctly.

You use the Configuration Manager to equate the unknown class to a standard class to allow JAWS to process the window correctly. This process is called reassigning the window class. Once you have reassigned a custom window class, JAWS is able to identify the window and speak it correctly. During window reassignment, you may need to try more than one class to determine what standard class works best.

To reassign a window class, you can use the JAWS, invisible or PC cursor to locate the window. To reassign a window class, do the following:

1. Move the JAWS, invisible or PC cursor to the window with the non-standard class.

2. Press insert+f2 to activate the Run JAWS Manager dialog.

3. Press W to move to the Window Class Reassign item.

4. Press enter to start the Configuration Manager and display the Window Classes dialog. The New Class edit box is the active control. The non-standard window class is shown in this edit box.

5. Press tab to move to the Assign To list box. This list box contains all of the standard window classes JAWS recognizes.

6. Use your arrow keys to move through the list. Select the window class you think best suits the non-standard window class.

7. Press tab to move to the Add Class button. Press spacebar to activate this button. You can also press enter from the Assign To list box to activate the add Class button.

8. Press the spacebar to activate the Ok button to close the Window Classes dialog. The Configuration Manager will also close.
 Exploring Applications with the Utility Functions

JAWS provides you with a powerful set of utilities to quickly analyze an unknown application. These utilities are called the Script Utility Mode. When the Script Utilities are activated, the keyboard is placed in a shifted state. These utilities give you access to system level window information that you can use when scripting an unknown application. You can determine parent-child relationships, windows identifiers, and retrieve information about MSAA objects.

Press CONTROL+WINDOWS+DASH to turn on the Script Utilities . Press CONTROL+WINDOWS+DASH a second time to turn off the Script Utilities .

Speaking Window Information

After activating the Script Utilities , you can speak various types of information about the active window. Press F1 to speak information about the window. By default, the window and related text are spoken when the utilities are activated for the first time.

You can cycle through the different pieces of information spoken by pressing F3. The pieces of information spoken are referred to as output modes. Each time you press F3 followed by F1, a different output mode is spoken. Output modes include: window type and text, focus, control ID, class, type, subtype, and real name.

As you cycle through the various output modes, you can press F1 to hear JAWS speak the current output mode. Pressing INSERT+HOME on the number pad will reset the output mode to say type and text. After the keystroke is pressed, JAWS announces “output mode is type and text.” This keystroke eliminates the need to press F3 to return to the say type and text output mode.

You can also copy the spoken information to the clipboard. Press CTRL+F1 to copy the spoken information to the clipboard. You can paste this information into your favorite text editor for review. Press INSERT+F1 to have JAWS place the information in the virtual viewer.
Moving to Windows

In the windows program structure, there is a parent-child relationship between all windows contained within an application. A parent window can have several child windows. All child windows of a specific parent window are siblings of each other and said to be on the same logical level. Using the Script Utilities , you can access each of these windows and speak information about them.

Moving Across the Windows Hierarchy

Using the Script Utilities , you can access windows even if they are not accessible through the TAB and SHIFT+TAB keys when Scriptis turned off. Press TAB to move to the next window on the same level. You can continue to press TAB until JAWS speaks “No next window.” This message indicates you have reached the last window on the same logical level.

You can move to the prior window on the same level by pressing SHIFT+TAB. You can continue to press SHIFT+TAB until JAWS speaks “No prior window.” This message indicates you reached the first child window on the same level.

As you press TAB or SHIFT+TAB to move through the windows, JAWS automatically speaks the selected output mode. You can press INSERT+TAB to hear the window type and text spoken by JAWS for the active window. If you are not sure where you began, press F5 to return the Script Utilities to the location of the PC cursor.

Moving Up and Down the Windows Hierarchy

You can use the Script Utilities to move up and down the windows hierarchy. This functionality gives you the ability to determine if the window with focus has any child windows associated with it. It also gives you the ability to move to the parent of the active child window. Press F2 to determine if the active window has any associated child windows. When a child window is found, the focus is moved to the child window and JAWS speaks the output mode information about the child window. You can continue to press F2 until JAWS speaks “Child window not found.” This message indicates you are at the bottom of the windows hierarchy and no more child windows are present. Press TAB and SHIFT+TAB to determine if there are other child windows on the same logical level.

Press SHIFT+F2 to determine if a child window has an associated parent window. You can continue to press SHIFT+F2 until JAWS speaks “Parent window not found.” This message indicates you have reached the top of the windows hierarchy. After you have reached a parent window, press TAB and SHIFT+TAB to determine if there are other windows on the same logical level. Remember that a parent cannot only have child windows, but it can be the child of another parent window. After reviewing the parent-child relationships, you can press F5 to route the Script Utilities to the active window. This essentially takes you back to the starting point from which you activated the Script Utilities .

Determining Window Visibility

As you move across, up, and down the windows hierarchy you are moving to windows that may or may not be visible on the screen. You can use the Script Utilities to identify the windows that are visible and those that are not. Press F6 to hear the visibility status of the current window announced automatically by JAWS. Each time you move from window to window with this option turned on, JAWS will announce the visibility of the window immediately following the output mode information. You can turn this feature off by pressing F6 a second time. You can also announce the visibility status of the current window by pressing F7. This will announce the visibility status regardless of the state of the F6 visibility status toggle.

Searching for Text Attributes

Many applications use text attributes to convey important information. You can search for attributes such as: highlight, bold, underline, italic, and strikethrough using the Script Utilities . To select the text attribute for which to search, press F4. Each time you press this keystroke, JAWS announces the text attribute. Pressing F4 repeatedly will cycle through all text attributes. Once you have selected the text attribute, press GRAVE ACCENT to begin the search. If the search finds text on the screen with the selected attribute, the JAWS cursor is placed on the text and it is announced. If the attribute is not found, then JAWS speaks “Next attribute not found”. This indicates there is no text with the selected attribute. Pressing GRAVE ACCENT subsequent times will move the JAWS cursor to the next occurrence of the attribute and announce the text. Pressing SHIFT+GRAVE ACCENT will move the JAWS cursor to the prior occurrence of the attribute and announce the text.

As you press GRAVE ACCENT or SHIFT+GRAVE ACCENT, the JAWS cursor moves to the next or prior occurrence of the attribute, but will not stop at the last or first occurrence. Instead, the search begins over again and JAWS will not announce, “Next attribute not found.”

You can press CTRL+GRAVE ACCENT to immediately move the JAWS cursor to the location of the first occurrence of the selected attribute. You can also press SHIFT+CTRL+GRAVE ACCENT to move to the location of the last occurrence of the selected attribute.

Retrieving MSAA Information

When the active cursor is on an MSAA object, you can use the Script Utilities to provide information about the object. However, you cannot navigate through MSAA objects using the Script Utilities . If you need to retrieve information on an object you must first activate that object by moving to it with either the Jaws or PC Cursor.

Press F9 to speak information about the object. By default, the object name is spoken when the utilities are activated for the first time. You can move to the next output mode by pressing F10. You can move to the prior output mode by pressing SHIFT+F10. Each time you press either F10 or SHIFT+F10 followed by F9, a different output mode is spoken. Output modes include: name, type, and subtype.

You can also copy the output mode information about the active object to the clipboard by pressing CTRL+F9. You can then paste the information into a text editor for review after you complete your analysis of the application.

Script Utilities Keystroke Summary

The following utilities are helpful in finding all the information you need to know about controls, parent/child relationships, and text attributes.

	Keystroke
	Description

	INSERT+H
	Speak JAWS hot key shortcuts for the Script Utilities .

	F1
	Speak the selected mode of information.

	F1 pressed twice in succession.
	Spell the selected mode of information.

	INSERT+F1
	Display output mode information in the virtual viewer.

	CTRL+F1
	Copy output mode information to the clipboard.

	INSERT+CTRL+

F1
	Output Window Technical Info in the virtual viewer (You do not have to be in Scriptmode to use this command)

Activates node capture and places all window information into the virtual

	Viewer
	

Activates tree capture and places all the window information for child or parent windows

	into the virtual viewer
	

	F2
	Move to the first child of the current active window and speak output mode information.

	SHIFT+F2
	Move to the parent of the current active window and speak output mode information.

	F3
	Select the next output mode.

	SHIFT+F3
	Select the previous output mode.

	F4
	Select the attribute search mode. Attributes include bold, italic, underline, highlight, and strikeout.

	F5
	Initialize the Home-Row utilities to the window containing the active cursor.

	F6
	Toggle auto speaking of window visibility status. When this option is turned on, the window's visible status is spoken as you move to it.

	F7
	Speak the visibility status of the window currently referenced by the Home-Row utilities.

	F8
	Speak the contents of the window currently referenced by the Home-Row utilities.

	F9
	Speak the MSAA® Object output mode information. The active object is indicated by the position of the active cursor.

	INSERT+F9
	Display the MSAA object output mode information in the virtual viewer. This is not available on output modes that return integers.

	CTRL+F9
	Copy requested MSAA object output mode information to the clipboard.

	F10
	Select the next MSAA object mode.

	F11
	Speak current output mode.

	F12
	Speak current MSAA object output mode.

	TAB
	Move to next window and speak output mode information.

	SHIFT+TAB
	Move to prior window and speak output mode information.

	INSERT+TAB
	Speak the window prompt and text for the window currently referenced by the Home-Row.

	INSERT+NUM PAD HOME
	Set output mode to SayTypeAndText.

	INSERT+7
	Activate the window-reclassification dialog.

	INSERT+NUM PAD MINUS
	Route the Jaws or Invisible cursor to the window currently indicated by the Home-Row if it is visible on the screen.

	GRAVE ACCENT
	Move to the next text attribute.

	SHIFT+GRAVE ACCENT
	Move to the prior text attribute.

	CTRL+GRAVE ACCENT
	Move to the first text attribute.

	SHIFT+CTRL+ GRAVE ACCENT
	Move to the last text attribute.

	LEFT or RIGHT ARROW KEYS
	Changes the value of pixel movement performed by the MouseLeft and MouseRight functions

	UP or DOWN ARROW KEYS
	Changes the settings for which special characters are spoken

PAGE
15
Windows Program Structure

Last revised 2006-03-20

