The JAWS® Message Format

The JAWS message format allows you to create messages just as if you were typing the text of the message in a text editor or word processor. You no longer have to use string concatenation to produce speech output. The message format also gives you the ability to dynamically add information to your messages through the use of embedded place holders.

Using the message format, someone who is not a programmer can also edit the text of existing messages. You can type any character within the body of your message. JAWS can then speak the text or display the text of your message in the virtual viewer with a single function call to either the SayMessage or SayFormattedMessage function.

Although you can declare messages using the message format within a script source file (jss), it is best to declare thos messages within a script message file (jsm). You then include the message file within your script file using the “Include” statement discussed earlier.
Message Format

The JAWS message format consists of several key words:

· Messages

· @MsgName

· @@

· EndMessages

Messages Keyword

The Messages keyword indicates the beginning of the message block. It tells the compiler that everything between this line and the EndMessages line is written in the message format. You can place as many messages as you wish within a message block. You should only place this keyword once at the top of your message file following any comments. You do not need to include the Messages keyword for every individual message you create.

@MsgName

The @MsgName statement indicates the beginning of an individual message. The at symbol (@) indicates the beginning of an individual message. The “MsgName” portion of this statement is the actual name of the message that you designate. You should follow the same rules for naming messages as you do variables, scripts and user-defined functions. You should use no spaces, capitalize the first letter of each word and no punctuation except for the underline character (_). You will use the string of text less the at symbol (@), to refer to this message in your scripts and functions that speak the message.

All text following the @MsgName statement is part of the message body. All characters typed in the message body are literal, meaning that all characters are part of the individual message. You no longer need to use the backslash (/) character in front of any special characters that previously required it for translation. When you want a new line in your message, you can insert it by pressing ENTER.

You can also use placeholders within the body of your message. These placeholders give you the ability to place information gathered during script or function execution into your message. You can use up to nine placeholders within the body of the message. To add a placeholder in the message, you precede the number of the placeholder with the percent sign (%).

In addition to placeholders, you can use the KeyFor function to display keystrokes within the body of your message. This functionality is available only when displaying messages within the virtual viewer. When the KeyFor function is used, the keystroke is shown in the virtual viewer as a link. The keystroke can be activated by navigating to the link and pressing ENTER.

To add the KeyFor function to the body of your message, you must precede the name of the function with the percent sign (%). This indicates the point in your message in which JAWS places the desired keystroke. The KeyFor function requires a single parameter: the name of the script for which the keystroke will be displayed. To add the KeyFor function to the body of any message, use the following syntax:

%KeyFor(ScriptName)

 @@ Statement

The @@ statement indicates the end of an individual message. Each @MsgName must be followed by the @@ statement. There are no spaces between the 2 @ symbols.
EndMessages

The EndMessages key word indicates the end of the Messages block. Each Messages statement must have a corresponding EndMessages statement. You only need to include this key word once in your message file and usually at the bottom of the file.

Example Message Formats

Messages

@MsgTest

This is a test message.

Note that the text is formatted as you would type it or see it in a dialog box.

@@

EndMessages

The above example contains only one individual message within the message block.

Messages

@MsgTest

This is a test message.

Note that the text is formatted, as you would type it or see it in a dialog box.

@@

@MsgTest2

This is a second message.

Note that multiple messages can be contained within the message block.

@@

EndMessages

The above example contains two individual messages.

You can find many of these messages in the file Common.jsm. It is recommended you include this file in all your script files, as all messages and string constants contained in it begin with the letter “c” to avoid conflicts with your existing definitions. The Default.jsm file is still included to support any legacy code that uses the old JAWS system. If you need to copy some of your own scripts into the default file, just include the default.jsm file if you are using constants from there.

The FormatString Function

The FormatString function gives you the ability to dynamically replace text within the individual message using placeholders. As stated earlier, the placeholder uses the percent sign (%) followed by a number. These placeholders can be placed throughout the individual message.

The FormatString function formats the string containing the message and replaces any placeholders with strings of text. the FormatString function then returns the formatted string to the calling script or function. The syntax of the FormatString function is as follows:

let sMessage = FormatString (MsgName, sString1, sString2, sString3)

The MsgName variable is the individual message declared within the messages block. The parameters listed next are used to replace their respective placeholders within the message.

When you use the FormatString function and do not use all parameters, you must be sure to remove all commas following the last actual parameter used. For example, if you are using the FormatString function to add text to three place holders within a message called MsgText, the line inserted in your script by the Insert Function dialog looks like the following:

let sMessage = FormatString (MsgText, sText1, sText2, sText3, , , , , , ,)

If you use the arrow keys to review the line above, you will notice seven pairs of commas and spaces between the sText3 parameter and the right parenthesis. To ensure no errors are encountered at the time you try to compile the script containing this statement, you must remove the seven pairs of commas and spaces. Failure to do so will result in a “incorrect parameter format” error message when you try to compile the script or function containing the line above.

Note:
The number of comma and space pairs may vary based on the number of parameters used to format the message referenced in parameter one.

FormatString Examples:

The following examples illustrate the use of the FormatString function within a basic “Hello World” script.

Test.jsm

; test file containing message statements

messages

; For msgHello, %1= the first name, %2 = The Last Name

@msgHello

HELLO WORLD! My name is %1 %2.

@@

EndMessages

Test.jss

; test file to demonstrate the use of the message format and ;FormatString function

Include "HjConst.jsh"; default constants

Include "common.jsm"; default message file
Include "test.jsm"; test message file created above

Script HelloWorld ()

Var

String sMessage

Let sMessage = FormatString (msgHello, “John””, “Doe”)

SayFormattedMessage (OT_MESSAGE, sMessage)

EndScript

The spoken output from the above script is: “HELLO WORLD! My name is John Doe.”

The SayFormattedMessage Function

In the previous example showing the use of the FormatString function, the SayFormattedMessage function is used to output the text to the synthesizer. The benefit of using the SayFormattedMessage function is that it does a final format of the message in order to account for the %KeyFor() placeholder. The SayFormattedMessage function also gives you the ability to use short and long messages. This added functionality lets you account for the message length option in the Verbosity Options section of the Configuration Manager. You can choose to use short or long messages depending on your verbosity setting and preference.

The SayFormattedMessage function is called using the following syntax:

SayFormattedMessage (OutputMode Constant, LongMessage, ShortMessage)

If you are not using both short and long messages, then you will only need the output mode and long message parameters.

The Virtual Viewer

In previous versions of JAWS, the virtual viewer was only used in applications such as Internet Explorer and Microsoft® Outlook Express®. When you pressed INSERT+H to review the list of JAWS hot keys for a given application, the keystrokes were spoken and you had no way of reviewing the list without pressing INSERT+H a second time. This functionality, at times, made it difficult to get the desired hot key for the application.

JAWS now displays all help messages such as those created for the hot key help script performed by pressing INSERT+H, the INSERT+W, and INSERT+F1 in the virtual viewer. When JAWS displays the information in the virtual viewer, the virtual cursor is active. You can use the normal navigation keystrokes to read, select, and copy the selected text to your favorite text editor.

You can use this same functionality in your scripts to display help information. From a script development standpoint, the virtual viewer is a Virtual Buffer created using the JAWS Scripting Language as the interface. The virtual viewer is also known as the user buffer.

The JAWS message format gives you greater flexibility when displaying text in the virtual viewer. You can format the text using spaces, carriage returns, tab stops, etc. After formatting your message, JAWS displays the text in the virtual viewer with the same look and feel as text found in a text editor or word processor. By default, JAWS displays all text in the virtual viewer in black on a white background (except for links). The text also has a font type of Arial, and a point size of 12.

Displaying Text in the Virtual Viewer

Before you display text in the virtual viewer, you should check the status of the virtual viewer to make sure it is not currently being displayed. You can use the built-in function, UserBufferIsActive, to check the status of the virtual viewer. The function returns a value of 1 when the virtual viewer is active or displayed and a value of 0 when the viewer is not being displayed. When the virtual viewer is active, you can use the built-in function, UserBufferDeactivate, to close the virtual viewer prior to redisplaying text. Deactivating the virtual viewer before JAWS displays new information prevents the user buffer text from running together.

The following code example illustrates the use of the UserBufferIsActive and UserBufferDeactivate functions. You should place these statements before the virtual viewer is activated by either the SayMessage or SayFormattedMessage functions.

If UserBufferIsActive () Then

UserBufferDeactivate () ; closes the virtual viewer

EndIf

You can use either the SayMessage and SayFormattedMessage functions to display information in the virtual viewer. You pass the output type of OT_User_Buffer as the first parameter in either function to tell JAWS to display the message in the virtual viewer. Each function also accepts two additional parameters. The second parameter is the long message. This is the text of your message and can be in the form of a message contained in a message file, a string of text or a string variable containing the message. The third parameter contains the short message. Like the long message, the short message can be a message contained in a message file, a string of text or a string variable containing the message. If you are displaying information in the virtual viewer, JAWS ignores this parameter. Therefore, it is not necessary to pass any information in this parameter.

You can call either function using the following syntax:

SayMessage (OT_USER_BUFFER, “This text is being displayed in the virtual viewer”)

SayFormattedMessage (OT_USER_BUFFER, “This text is being displayed in the virtual viewer.”)

Displaying Keystrokes as Links

You can also create keystroke links in the virtual viewer by using the %KeyFor function. The %KeyFor function replaces the older use of the GetScriptKeyName function. Using the older method of speaking or displaying messages, you had to concatenate the string using the GetScriptKeyName function. Using the new message format, you can insert the script name directly into your message by adding the following line:

%KeyFor(ScriptName)

The percent sign preceding the function name acts as a placeholder for the keystroke. When the message is displayed in the virtual viewer, the function retrieves the keystroke for the script named in the functions parameter. The keystroke is displayed as a link that can be activated by pressing ENTER on the line containing the keystroke.

Note:
Inserting a space between the %KeyFor and the left parenthesis will display the keystroke as normal text and not as a link.

Example of Displaying Text in the Virtual Viewer

The following script and message file additions illustrate the use of the JAWS message format to display text in the virtual viewer:

Test.jsm

CONST

; Strings for edit prompt:

sDlgName = "Enter Name",

sFirstPrompt = "First Name: ",

sLastPrompt = "Last Name: "

messages

; For msgHello, %1= the first name, %2 = The Last Name

@MsgHello

HELLO WORLD! My name is %1 %2.

Press, %KeyFor(HelloWorld), to redisplay this message.

Press ESCAPE to close this message.

@@

EndMessages

Test.jss

Include "HjConst.jsh"; default constant definitions

Include "HjGlobal.jsh"; default global variable definitions

Include "common.jsm"; default virtual viewer constants and messages

Include "test.jsm"; test message file

Script HelloWorld ()

Var

String sFirstName,

String sLastName,

String sMessage

If UserBufferIsActive () Then; determine if user buffer is active

UserBufferDeactivate (); close or deactivate the virtual buffer

EndIf

InputBox (sFirstPrompt, sDlgName, sFirstName); prompt for the first ;name

InputBox (sLastPrompt, sDlgName, sLastName); prompt for the last ;name

let sMessage = FormatString (MsgHello, sFirstName, sLastName)

; replace the % place holders with data

SayFormattedMessage (OT_USER_BUFFER, sMessage); display the ;message in the user buffer

EndScript

In the above example, the script begins by checking the status of the virtual viewer. If the viewer is active, then JAWS deactivates it before the script continues processing. The two InputBox statements retrieve the first and last names from user input. The FormatString function then takes the first and last name information and combines it with the message to create a final version of the message. The message is then displayed in the virtual viewer using the SayFormattedMessage function.

If you create the script above, assign it to CTRL+1 and you enter “John” for the first name and “Doe” for the last name, JAWS displays the following text in the virtual viewer:

HELLO WORLD! My name is John Doe.

Press, ctrl+1, to redisplay this message.

Press ESCAPE to close this message.

