Flow Control

JAWS does not always perform scripts in a sequential or top to bottom manner, with each line being performed in order and only once. You may find it necessary to perform a series of statements several times within a script. You may also find it necessary to skip statements in a script based on the outcome of a condition being evaluated. These types of statements control the flow, or sequence of events, in a script or function. A script or function can contain any or all of these techniques.

Sequential

Sequential flow is the most basic type of flow control. In a sequential statement structure, JAWS performs each statement sequentially beginning with the first statement in the script and continuing to the EndScript statement.

The following script is an example of sequential flow. You can find this script in the Default.jss script file. The script selects text from the beginning of the line to the cursor. The code of the script follows:

Script SelectFromStartOfLine()

Let nSaySelectAfter = FALSE

SelectingText(TRUE)

SelectFromStartOfLine ()

SelectingText(FALSE)

EndScript

JAWS performs the script above each time you press SHIFT+HOME to select the text from the cursor to the beginning of the line. JAWS performs each statement in the script only once.

Selection, Conditional, or Decision Making

In this type of statement structure, JAWS evaluates one or more conditions before processing continues. The flow of the script is then based on the outcome of the condition being evaluated. This process is often referred to as branching. Think of walking down a path and coming to a fork in that path. Before you continue, you must decide which path is the best way to continue. Your script can do the same thing. As JAWS processes your script sequentially, there may be a point in the script where a decision must be made. The statements JAWS processes next are based on the outcome of that decision.

The If-Then Statement

You can use the If-Then statement structure to select which path in your script is taken if the preceding statement is true. You must include the If, Then, and EndIf key words in all If statement structures. You place the condition to be evaluated between the If and Then key words. When JAWS evaluates the condition and finds it to be true, JAWS performs any statements following the If statement. An example of a basic If statement follows:

If DialogActive () == TRUE Then

 SayFormattedMessage (OT_MESSAGE, "A dialog box is active") ;The condition evaluates to true

EndIf

In the above example, JAWS can only take one path based on the outcome of the condition being evaluated in the If statement. When a dialog box is active, then JAWS performs the SayFormattedMessage function and speaks “A dialog box is active.” When the condition being evaluated is false, then JAWS does not perform the SayFormattedMessage function and processing continues with any statements that follow the EndIf key word.

The Else and ElIf Statements

You can use two optional statements in an If-Then structure. You can use the Else key word to provide an alternate path. When the condition specified in the preceding If statement is found to be false, then JAWS performs the statements following the Else key word. Thus, you can account for both true and false conditions in your If statements. An example of an If-Then-Else statement follows:

If DialogActive () == TRUE Then

 SayFormattedMessage (OT_MESSAGE, "A dialog box is active")
; the condition evaluates to true

Else

 SayFormattedMessage (OT_MESSAGE, "No dialog box is active")
; the condition evaluates to false

EndIf

In the above example, the If statement determines if a dialog box is active. When the If statement is true, JAWS performs the SayFormattedMessage function following the If statement and speaks “A dialog box is active.” If a dialog box is not active, then JAWS performs the SayFormattedMessage function following the Else key word and speaks “No dialog box is active.”

You can use the ElIf statement as a secondary way of formulating a branch. The ElIf statement can take the place of an Else statement. You can also use the ElIf statement in addition to the Else key word. You can use as many ElIf statements as needed in your scripts. However, when you use the ElIf statement in addition to the Else key word, those ElIf statements must precede the Else statement.

Two examples of the uses of the ElIf statement within an If-Then-Else-EndIf statement follow:

If DialogActive () == TRUE Then

SayFormattedMessage (OT_MESSAGE, “A dialog box is active”)

ElIf DialogActive () == FALSE Then

SayFormattedMessage (OT_MESSAGE, “No dialog box is active”)

EndIf

The above example uses an ElIf statement in the place of the Else key word. The If statement determines if a dialog box is active. When the If statement is true, JAWS performs the SayFormattedMessage function following the If statement and speaks “A dialog box is active.” When the If statement is false, JAWS performs the ElIf statement that determines if there is no active dialog box. If the ElIf statement is true, then JAWS performs the SayFormattedMessage function following the ElIf statement and speaks “No dialog box is active.” Since there are only two possibilities, JAWS must perform either the SayFormattedMessage statement that follows the If statement or the SayFormattedMessage statement that follows the ElIf statement.

The following example illustrates the use of an ElIf statement in conjunction with an Else statement:

If DialogActive () == TRUE then

 SayFormattedMessage (OT_MESSAGE, "A dialog box is active”)

ElIf MenusActive () == ACTIVE Then

 SayFormattedMessage (OT_MESSAGE, "A menu is active”)

Else

 SayFormattedMessage (OT_MESSAGE, "No dialog box or menu is active”)

EndIf

The above example uses an ElIf statement in addition to the Else key word in the If-Then statement structure. The initial If statement determines if a dialog box is active. If a dialog box is active, then JAWS performs the SayFormattedMessage function following the If statement and speaks “A dialog box is active.” If a dialog box is not active, then JAWS performs the ElIf statement that determines if a menu is active. If the ElIf statement is true, JAWS performs the SayFormattedMessage function following the ElIf statement and speaks “A menu is active.” However, if no menu is found to be active, then JAWS performs the SayFormattedMessage function following the Else key word and speaks “No dialog or menu is active.”

Nested If Statements

You can place or nest an If statement inside of another If statement. Nesting If statements allows you to check for a condition only when another condition exists. JAWS evaluates the nested If statement only when the first condition is true. JAWS performs the sequence of statements within the nested If-Then statement only if both conditions are found to be true. An example of the use of nested If statements follows:

If DialogActive () Then; determine if a dialog box is active

let sWindowName = GetWindowName (GetRealWindow (GetFocus ())); retrieve the window name for the active dialog

 If sWindowName == “Open” Then ; the Open file dialog is active

 SayFormattedMessage (OT_MESSAGE, "The Open File dialog is active”)

Else

SayFormattedMessage (OT_MESSAGE, “A dialog box other than the Open File dialog is active.”)

 EndIf

Else

 SayFormattedMessage (OT_MESSAGE, "No dialog box is active”)

EndIf

In the above example, the first If statement determines if a dialog box is active or being displayed. When the If statement is true, JAWS performs the let statement and retrieves the window name for the active dialog. Next, the nested If statement uses the window name to determine if the Open File dialog is active. If the nested If statement is true, then JAWS performs the SayFormattedMessage function following the nested If statement and speaks “The Open File dialog is active.” If a dialog box other than the Open File dialog is active, then the nested If statement is false and JAWS performs the SayFormattedMessage function following the else key word and speaks “A dialog other than the Open File dialog is active.”

If JAWS determines no dialog box is active, then JAWS performs the SayFormattedMessage function following the Else key word in the outer If statement following the Else key word and speaks “No dialog box is active.”

Iterative or Looping

The third type of flow control you can use in your scripts is called iterative or looping. You use the iterative statement structure to perform the same statement or group of statements repeatedly while a condition is true. You use a loop to perform a sequence of statements several times, thus shortening the number of statements required. Looping provides a way to determine the number of repetitions automatically, depending on conclusions derived from script operation.

The While-EndWhile Statement Structure

You perform looping in your scripts by using the While-Endwhile statements structure. A While Loop is a statement structure that repeats or loops WHILE a condition is true. A While loop consists of two parts: the While statement which sets the condition to be tested for, and the EndWhile statement that terminates the loop. JAWS performs all statements within the boundaries of the While and EndWhile statements repeatedly until the condition in the While statement becomes false. An example of a While-EndWhile loop structure follows:

While Variable1 < 5 ; this condition will cause the loop to be performed 4 ;times

; Statements to be performed go here

Let Variable1 = Variable1 + 1

EndWhile

In the above example, JAWS performs the While loop while Variable1 is less than 5. Once the value of Variable1 becomes equal to 5, the loop ends and no further processing occurs.

Note:
A loop continues until a condition becomes false. You must be careful not to set up a loop with a condition that will never become false. To do so would create an infinite loop, which will cycle forever, and lock up the computer until the program is terminated manually. Think carefully about the condition meant to terminate the loop to be sure it will become false at some time. If you find that the computer seems to lock up after you execute a new script with a While loop in it, this is probably what is happening.

Avoiding Infinite Loops

When you create an iterative flow sequence in a script using a While loop, care should be taken not to create an infinite loop that results in a locked computer. Since a loop continues until a condition becomes false, you must be certain that the condition being tested can actually become false. One way you can avoid this problem is to include statements designed to break the loop after a certain number of repetitions. An example of this follows:

Var

int iSafety

Let iSafety = 1

While iSafety < 10

NextLine ()

If GetLine () == “Save As…” Then

Let iSafety = 10; cause the loop to terminate

EndIf

Let iSafety = iSafety +1; increment the value of the iSafety variable

EndWhile

In the above example, JAWS performs the loop while the value of iSafety is less than 10. Each time JAWS performs the loop, JAWS performs the NextLine function to move to the next line. The If statement determines if the text at the location of the active cursor is that of “Save As…” When the If statement is found to be true, the iSafety is given the value of 10. This makes the While statement false and the loop terminates. When the If statement is false, then the value of iSafety is incremented by 1.

When the value of iSafety becomes equal to 10, JAWS terminates the loop as iSafety is no longer less than 10. A second example of a while loop follows:

While (hPos); perform the While loop while the value of hPos is not zero

; once the value of hPos becomes zero, then the loop terminates

; the While statement could also be written as While hPos! = 0

If IsWindowVisible (hPos) then ; determine if the window referenced ;by hPos is visible

SpeakWindowInformation (hPos)

endIf

Let hPos = GetNextWindow (hPos); retrieve the handle for the next ;window

EndWhile

In the above example, JAWS performs the loop while the value of the handle variable, hPos, is not equal to zero. Within the loop, JAWS determines if the window referenced by hPos is visible. If the window is visible, then JAWS speaks information about the window. Next, the GetNextWindow function retrieves the handle for the next window. If the GetNextWindow function does not actually find a next window, then the function places zero in the hPos variable. When the hPos variable contains zero, the condition being evaluated in the While statement is no longer true as the value of the variable is now zero. This terminates the While loop.

Compound Statements

You can create compound statements using both If-Then-EndIf and While-EndWhile statement structures. A compound statement can determine if 2 conditions are both true. A compound statement may also determine if one of two conditions are true.

Compound Statements Using AND

When you join 2 statements together using the && operators, the statement is said to be a “and” compound statement. In this type of compound statement, both conditions must be true before the entire If-Then or While statement are true. If either one of the conditions being evaluated is false, the entire If-Then or While statement is then considered to be false. You use two & symbols to indicate a compound statement where both sides must be true. An example of the use of the && symbols in an If-Then statement follow:

let sWindowName = GetWindowName (GetRealWindow (GetFocus ())) ;retrieve the name of the active window

If DialogActive () && sWindowName == “Open” Then

Say (“The Open File dialog is active”, OT_MESSAGE)

EndIf

In the above example, the compound If statement determines if the active dialog box is the Open File dialog. The first part of the If statement determines if a dialog box is active. The second part of the If statement determines if the name of the active dialog is that of the Open File dialog. If both conditions of the If statement are true, then JAWS performs the Say statement following the If statement and speaks “The Open File dialog is active.”

When there is no active dialog, the first condition is false making the entire If statement false. Likewise, if the name of the active dialog is something other than that of “Open”, then the second condition is false making the entire If statement false. In either case, JAWS does not perform the Say statement following the If statement.

Compound Statements Using OR

When two statements are joined together using the || operators, the statement is said to be a “or” compound statement. In this type of compound statement, either condition can be true for the entire If-Then or While statement to be true. However, both statements do not have to be true to make the entire If-Then or While statement true.

You use the|| symbol to indicate a compound statement where either side must be true. An example of the use of the || symbols in an If-Then statement follow:

If iValue < 5 || iValue > 10 Then

Say (“The value is either less than 5 or greater than 10.”, OT_MESSAGE)

EndIf

In the above statement, either sides of the ||’s can be true for the entire If statement to be considered true. Therefore, the value of the iValue variable can be less than 5 or it can be greater than 10. A value of 4 in the iValue variable would make the entire statement true as the iValue < 5 statement is true.

Logical Operators

You use logical operators to compare variables to other variables or constants. You frequently need to know if one variable has the same value, a lesser value, or a greater value than another variable. Sometimes you must compare several items or groups of items with other items. The logical operators are usually used within If-Then and While loops to check whether conditions required for logical decisions are true or false. A list of the JAWS logical operators is shown below.

	Operator
	Description

	==
	Two equals signs together in this manner ask whether the first condition is "equal to" the second condition. That is, is the expression to the left of the two equals signs equivalent to the expression on the right side. For example, the expression (A == B) asks whether A equals B.

	!=
	 An exclamation point and an equals sign together in this manner ask whether the first condition is "not equal to" the second condition. That is, is the expression to the left of the exclamation point and equals sign different from the expression on the right side? For example, the expression (A != B) is true if A does not equal B.

	<
	 A < sign asks whether the first condition is "less than" the second condition. That is, is the expression to the left of the < sign less than the expression to the right side? Thus, the expression (A < B) is true if A is less than B.

	<=
	 A < sign followed by an equals sign asks whether the first condition is "less than or equal to" the second condition. That is, is the expression to the left of the <= signs less than or equal to the expression to the right side. Thus, the expression (A <= B) is true if A is less than or equal to B.

	>
	 A > sign asks whether the first condition is "greater than" the second condition. That is, is the expression to the left of the > sign greater than the expression to the right side. Thus, the expression (A > B) is true if A is greater than B.

	>=
	 A > sign followed by an equals sign asks whether the first condition is "greater than or equal to" the second condition. That is, is the expression to the left of the >= signs greater than or equal to the expression to the right side. Thus, the expression (A >= B) is true if A is greater than or equal to B.

	&&
	 This operator is placed between two logical comparisons made using logical operators such as the ones described above. It asks whether the first condition is true "and additionally" is the second condition true. The total expression is evaluated as true only if the comparisons on both sides of the && operator are true. Thus, in the expression (A == B) && (C != D), a value of true is only returned if A does equal B and C does not equal D.

	||
	 This operator is placed between two logical comparisons made using logical operators such as the ones described above. It asks whether either the first condition is true or whether the second condition is true. The total expression is evaluated as true if either of the comparisons on either side of the || operator is true. Thus, in the example (A == B) || (C == D), a value of true is returned if either A equals B or C equals D. Of course, a value of true would also be returned if both expressions were true.

 PUBLISHED BY

Freedom Scientific Blind/Low Vision Group LLC

11800 31st Court North

St. Petersburg, Florida 33716-1805 USA

http://www.FreedomScientific.com

Phone toll free 800-444-4443

Phone outside of the US and Canada 727-803-8000

FAX 727-803-8001

Information in this document is subject to change without notice. No part of this publication may be reproduced or transmitted in any form or any means electronic or mechanical, for any purpose, without the express written permission of Freedom Scientific. Copyright (c) 1993 - 2006 Freedom Scientific BLV Group, LLC. All Rights Reserved. JAWS is a registered trademark of Freedom Scientific BLV Group, LLC in the United States and other countries. Microsoft, Windows NT, Windows 2000, Windows XP, Windows 95, Windows 98, and Windows Me are registered Trademarks (tm) of Microsoft Corporation in the U.S. and/or other countries.

